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We have found hundreds of solutions to the integrability equations in aesthetic 
field theory. The behavior of the solutions to the aesthetic field equations 
depends on which solution to the integrability equations we take. From com- 
puter runs down a coordinate axis we have found a type of solution where we 
have a maximum and a minimum, as well as the field going to zero at large 
distances along both directions. This kind of solution is quite prevalent. We call 
this type of solution a "pulse" solution. We have found the "pulse" solution in 
two and three dimensions as well as four dimensions. It appears regardless of 
whether certain symmetries are present or absent. We have taken a two- or 
three-dimensional l?~V and made a four-dimensional theory from it with the use 
of a four-dimensional e~i. This process we call "imbedding." We have found 
imbedding has not affected the overall characteristics of the solution in the 
cases we considered. We were able to change the character of the solutions to 
some degree by altering the magnitude of some of the gammas--but this did 
not lead to solutions with significantly more wiggles. We also found an example 
of an oscillatory solution. The oscillations occurred in too regular a pattern to 
give a realistic model for basic behavior. However, this solution indicates that 
aesthetic field theory has more structure then we have ever seen before. We also 
obtained a solution in which errors took over so fast that the computer was 
literally helpless in telling us what is going on. In other solutions the field 
appears to increase without bounds. Whether this is due to singularities or to 
the presence of large numbers is not clear. 

1. I N T R O D U C T I O N  

W e  h a v e  b e e n  s t u d y i n g  w h a t  we  call  A e s t h e t i c  F i e l d  T h e o r y  f o r  s o m e  

t i m e  ( M u r a s k i n ,  1975). I n  th is  p a p e r  we  d i scuss  a set  o f  m a t h e m a t i c a l l y  

a e s t h e t i c  ideas  a n d  t h e n  d e m o n s t r a t e  t h a t  t hese  i d e a s  d e f i n e  a f ie ld  t h eo ry .  

W e  t h e n  s h o w  t h a t  t h e s e  f i e ld  e q u a t i o n s  h a v e  a n o n t r i v i a l  c o n t e n t .  A 

t w o - p a r t i c l e  s c a t t e r i n g  s o l u t i o n  o f  t he  e q u a t i o n s  w a s  s t u d i e d  in  s o m e  de t a i l  
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(Murasldn and Ring, 1975a). Once we observe a scattering we are in a 
position to deduce force laws and hence we can compare our solution with 
real-world behavior. Our two-particle scattering solution, although nontri- 
vial, appears too simple to be realistic. Thus a search has been initiated for 
more complicated solutions to the field equations. 

In way of summary, we have required that all tensors and all orders of 
derivatives of the tensor fields be treated in a uniform way so far as their 
change is concerned. We work in a flat space-t ime described by Cartesian 
coordinates. We refer the reader to Muraskin (1975) for details. 

The basic field equations are 

3 ~ k  m i i m i m - -  i __ r ~ ,  r ; ,  - r j ~ r k ,  = r}k,, - o - -  + r ; r m , -  (1 .1 )  
3x t 

The integrability equations associated with (1.1) are 

i m i m m i 
r~k Rmpt = 0 Fj. m R~,t - F mk Rj~ ! + (1 .2)  

with 

or'ik or'ira j , j , 
' - - L m r j k  + r , k r j m  R i ' k  = 3X t 3x  k 

(1.3) 

Inserting (1.1) and (1.3) into (1.2) shows us that (1.2) is a set of 
algebraic nonlinear conditions. Once these conditions are satisfied at an 
arbitrary origin point they are satisfied everywhere as a consequence of the 
field equations. This gives us a handle on the accuracy of our computer 
solutions as we can test to see to how many decimal places (1.2) is satisfied 
after we have made a computer run away from the origin. 

In four dimensions equation (1.2) represents a set of 384 algebraic 
conditions for the 64 I~. k (we have antisymmetry in the indices p and l). It 
is not clear at all that the equations (1.2) have any nontrivial solutions. 
However, by now, we have found a profusion of solutions to (1.2) and it is 
therefore our task to make a study of the solutions that have been 
obtained. Since (1.2) has nontrivial solutions we can say that solutions to 
(1.1) exist, locally at least, (Muraskin, 1975). Computer solutions suggest a 
global existence as well. 

The equations written down above imply 

T i J  "" k l . . .  ; s  = 0 (1.4) 

where TiJ'kl.." is any tensor function involving 1"}~ including any order 
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derivative of tensor functions involving Fj.~. ;s has the same mathematical 
structure as a covariant derivative. It should be remembered this corre- 
spondence is only formal as we are in a Cartesian system in a flat space. 

As is pointed out in Eddington (1960) "A four dimensional continuum 
obeying Riemannian geometry can be represented graphically as a surface 
of four dimensions drawn in a Euclidean hyperspace of a sufficient 
number of dimensions." Thus in our theory, where we work in a flat space, 
we shall leave as a parameter the dimensions of space (Muraskin and Ring, 
1975b, 1974). 

No new algebraic conditions are needed in addition to (1.2) in order 
to establish local existence to the system (1.4). 

When TiJ"~l . .  is taken to be Fj. k (which we call the change function) 
we end up with the equations (1.1). 

Thus there exists a set of fields, Fj.~, such that products, contractions, 
and orders of derivatives of tensor combinations of the field are treated in 
a uniform way so far as their change is concerned. 

The structure of (1.1) is such that if Fj. k is given to us at one point then 
Fjk is determined at all points. 

Although equations (1.1), (1.2),and (1.3) are conceptually simple the 
equations in practice are quite complicated and make analytic work 
difficult. For example, it would not be easy to reproduce the two-particle 
scattering solution given in Muraskin and Ring (1975a) by analytic means. 
We have found the computer to be an excellent tool in studying the 
solutions of (1.1), (1.2), and (1.3). 

An extensive search for solutions of (1.1), (1.2), and (1.3) was begun in 
Muraskin and Ring (1976a). The techniques used are described in that 
article. In this paper we put together what has been learned from such a 
study. 

2. INTEGRABILITY AND THE NATURE OF SOLUTIONS 

We introduce ~ (as in Muraskin, 1975) 

r~k = e/e~e~gr~v (2.1) 

If F~v obeys the integrability equations then r~ k will also. 
The nature of the solutions to the field equation depend on the choice 

of F~v. Examples to illustrate this point will be found below. We will only 
consider in this paper those F~v that satisfy the integrability equations. 

(a) F~.~ all equal leads analytically to a singular Fj,. 
(19) The following data lead to Fjk being the same at all points. (All 

F~v are zero except for those listed below. This will be the same procedure 
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we use in describing other solutions in this paper as well.) e ~. in this paper 
will be taken to be the same e~/as in Muraskin and Ring (1975a). ~ v  is 
then taken to be 

r l = r ~ 2 _ r l  _ r 2 _ r E _ v E _ v 3 _  3 _  3 _  
- -  ~ 3 3  - -  ~ 1 1  - -  ~ 2 2  - -  ~ 3 3  - -  ~ 1 1  - -  I ' 2 2  - -  F 3 3  - -  - -  O .  1 

(2.2) 
r h  = r;3 = r h  r 3= -- r,23-- r233 

Unlike the trivial solution in Murasldn (1974) we do not have a~;isymme- 
try in any pairs of indices in the expression g.Br~v with g.~ ----(1, 1, 1, 1). 

Another trivial solution occurs when we take 

r~ l _ p 1  _ p l  _ p l  _ F 2  _ 1 ~ 2  _ p 2  ~ 
~ 1 2  - -  ~ 3 3  - -  ~ 3 0  - -  ~ 2 3  - -  ~ 2 0  - -  ~ 0 1  

_ p 3  _ p 3  _ p 3  0 0 
- -  ~ 1 3  - -  •  - -  ~ 3 1  = 1-'32 ~--- 1~21 = F22 = ~ 3  = Yoo = O. 1 

(2.3) 
F 1  ~ 1 - , 1  _ l ~ l  _ p l  _ p 2  _ y , 2  _ p 2  ~ p 2  ~ 1 - , 3  .~_1~32 

23 ~ ~-20 - ~ 0 1  - ~ 0 2  - -  ~ 1 1  - -  ~ 1 2  - -  1 3 3  - ~ 3 0  - -  ~ 2 1  

3 _ 3 _ 0 ~ 0 
- r03 - F 0 o -  F 1 3  - -  r l  0 - r~31 = r ~  = - o .  1 

There is no way to avoid errors in a numerical calculation. The trivial 
solution (2.3) is much more sensitive to errors than the trivial solution (2.2). 
We see this in the integrability equations which are not as well satisfied as 
we move away from the origin. 

(c) In Muraskin and Ring (1975a) we have described in detail a 
two-particle scattering solution. Computer pictures are to be found in this 
article. Running along the _ x axis we find one minimum and one 
maximum for 17~1. F~l approaches zero eventually in both + x and - x .  All 
the components of F~, are reasonably similar. This type of behavior along 
the ___ x axis we will hereafter refer to as "pulse" behavior. 

A difficulty with such a solution is that we only see structure around 
the origin. The fields go to zero outside the two-particle system. We would 
expect a more realistic situation to allow for multipulses along the axis. We 
cannot say from our computer studies that further structure does not 
develop when one goes far enough away from the particles. However, in 
our work we have found no evidence for this. 

In Muraskin and Ring (1976a) we obtained such "pulse"-type solu- 
tions having varied properties. For example, some pulse solutions have 
Rj~t=0, some have Ftk--Fkt etc. Sometimes we saw as many as four 
turnabout points along an axis (We attributed this to an "arm" structure in 
Muraskin and Ring (1975a)). 

However, all our "pulse" solutions found previously had the property 
that F ~  is symmetric under the following interchange of indices: 

1--)2 2--.3 3--->1 (2.4) 
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o r  

1--~2 2 ~ 3  3-~0 0--->1 (2.5) 

This latter situation is discussed in Muraskin and Ring (1976b). 
We have now found that pulse solutions appear  without starting off 

with such symmetries. An example is 

r ; , = r l = r ~ = r l ~ _ ~ 2 _ r 2 _ ~ _  ~ ~ _  _ 0 
- -  ~ 1 2  - -  ~ 1 3  - -  J - 3 1  - -  r~2 = r ~  - ~ o -  r:o 

0 _ 0 - r 3 o -  r0o = r ~ = r ~  = ~ 3  = o. 1 (2 .6)  

r~o 2 3 =  = r o o = r 0 o  - 0 . 1  

Without the symmetry it is not clear that runs along _+y, _+ z, _+ t should 
show features similar to the runs along _+ x. We therefore ran along all the 
coordinate axes and found the same pattern in each case. Also selected 
maps showed no unusual behavior f rom what we had seen before. We have 
found a fair number  of solutions not starting with the symmetries (2.4) or 
(2.5). We note that once e~i t ransforms a solution the symmetry (2.4) or 
(2.5) would be lost. We have not proved that there is no e~; transformation 
in all these instances that would lead to the symmetry (2.4) or (2.5). All we 
can say is that we do not know of any e~i t ransformation that would 
unmask such a symmetry. 

The conclusion we reach is that pulse solutions are easily obtained. 
Solutions having such behavior have varied mathematical  properties. 

(d) We have found a large number  of solutions where the field 
component  we are studying (which we have taken to be F]I ) appears to get 
bigger and bigger in magnitude with no bound. Before this happens there 
may be one, two, or (rarely) three turnabout points. In many  instances 
there are no turnabouts points. Often in this latter situation we have a 
bound of zero in either the + x or - x  direction. 

It is not clear whether a singularity is developing or we are dealing 
with extremely large numbers. 

An example of Fll getting bigger and bigger in the - x  direction but 
going to zero in the + x direction with no turnabout points is 

r~,  = r l ~ =  r l ~ =  to'3 = r ~ , -  2 _ - r 2 2 -  r23 = F21 = r~l = F32 

= F0a2 = r333 = y ~  = F ~  = 1~o 3 = - 0 . 1  ( 2 . 7 )  

I , l l  __  r l  __ r E  __  p 2  __  1~3 __  ]~3  __  l p 0  __ + 0 .  I 
~ 3 0  - -  ~ 1 0  - -  •  - -  ~ 2 0  - -  ~ 0 3  ~ ~ 0 0  

An example of F~l getting bigger and bigger in the - x direction with three 
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t u r n a b o u t  po in t s  a n d  wi th  FXu a p p r o a c h i n g  zero in  the + x d i r ec t ion  is 

rh = p1 _ -pl _ r2  _ 1~2 _ 1~2 _ 1-,3 _ No ~__ i~12 ~_ ~ ~21 ~-- r~  = - 0 . 1  x22 -- xO0 ~ ~12 -- ~21 -- ~00 ~ ~33 ~ ~1 1 

r ~ 2 = r l _ r l _ r l _ r l _  l _  2 _  2 _  2 (2.8) •  - - 2 1  - -  - - 2 0 -  x O l  - -  F 0 2  - -  ru - F 2 2 -  YlO 

= r~o= roll = ro~2 = tOo = ~o= r~ = ro, = to2 = o.1 

(e) W e  have  f o u n d  a n  osc i l l a tory  so lu t ion .  W e  take F~T to b e  

r h  =0 .1  Y',2 = 0.1 r',3=o rlo=O 

F~,= -o.1 r;2=-o.1 r13=o .1  rlo=Ol 

F~I = - 0 . 1  F~2= - 0 . 1  F313 = 0.1 F~o--- 0.1 

r',=o r12=0 r0'3=-0.1 r1=-0 .1  

r L = o  r~,2= 0 r~3=-0.1 F20 = -0.1 

r, ~, =o r~2=o r~=o r~o=O 

rL =o r~2=o r ~ = o  r~o=O 

r~l  = O. 1 F22 = O. l I~23 = 0 Y 2 = 0 (2.9) 

r; ,  =0 .1  r~2=o.1 r313 =0 r]o=O 

r~, =o r,~= o r,3~= o r~o=O 

rL =o r~2=o r ~ = o  r~o=O 

Yg, = 0  Yg2=0 Fg3= - 0 . 1  Y~o = - 0 . 1  

I~u = 0  r ~  F~ = - 0 . 1  F~ = - 0 . 1  

~ = -0A r~ - 0 . 1  F~ = 0.1 r~ o.1 

I '~ -'- --0.1 I~32=- - -0 .1  r~  = o.1 r ~  o.1 

r~ ~2=o.1 r~ rO=o 

W e  f o u n d  osc i l la tory  b e h a v i o r  a l o n g  all  c o o r d i n a t e  axes for  r~l .  W e  list i n  
T a b l e  I the  t u r n a b o u t  po in t s  a l o n g  the  y axis n e a r  the  or igin.  
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TABLE I. Turnabout Points along they Axis 

y coordinate Value of 
at turnabout F~l 

4 3  1.500 
23 - 0.300 

3 0.249 
- 17 0.081 
-37  0.133 
-57  0.117 
- 7 7  O. 122 
- 97 O. 1203 

- 117 0.1207 
- 137 0.12059 
- 157 0.12063 
- 177 0.120622 
- 197 0.120626 

The  t u rnabou t  po in ts  a re  equa l ly  spaced  a long  t h e  axes. I t  appea r s  
f rom the regular i ty  that  the n u m b e r  of t u r n a b o u t  po in ts  m a y  well  be  
infinite.  The  ampl i tude  of the osci l la t ions  decreases  as we move  down  
Tab le  I. A r o u n d y  = - 197 the change  of amp l i t ude  becomes  so smal l  as to 
be  ba re ly  detectable .  

In  our  previous  work  we never  found  any  so lu t ion  obey ing  in tegrabi l -  
i ty tha t  has  more  than  four  t u r n a b o u t  po in ts  a long  an  axis. Thus  with 13 
obse rved  t u rnabou t  poin ts  in Tab le  I it is c lear  that  the aes thet ic  f ield 
equat ions  are  c apab l e  of new effects not  prev ious ly  seen. 

Our  present  so lu t ion  is too  regular  to be  a real is t ic  m o d e l  for par t ic les .  
Also  the con tour  l ines do  no t  a p p e a r  to close as far  as we could  tell. I t  is 
no t  de t e rmined  whe ther  the osc i l la t ions  are  bounded .  

This  solut ion has  a comple t e ly  di f ferent  cha rac te r  f rom those  seen 
previously.  This so lu t ion  was also ra ther  diff icul t  to find. I n  con t ras t  the 
o ther  k inds  of so lu t ions  we have  descr ibed  a p p e a r e d  in grea t  numbers .  

(f) There  exist solut ions  we have  f o u n d  for  which the compu te r  
appea r s  helpless  in de t e rmin ing  wha t  is going on. Cons ide r  the fo l lowing 
r ~ :  

r '  - ~ ,  - ~ '  - ~ '  = r l  ~, = r , ~ =  r ~  = r ~  13 - -  ~ 0 2  - -  ~ 3 1  - -  ~ 2 0  

- - r 3 - - r 3 - - 1 " 3 - - r 3 -  _ 0 _ 0 _ 0 _  
- -  ~ 1 3  - -  ~ 2 0  - -  ~ 3 1  - -  ~ 0 2  - -  r ~ l l  - 1"22 - F33 - F ~ -  0. l 

(2.10) 
F 1  _ r l  _ _ ] ~ 1  __ 1 __ 2 _ _ p 2  _ _ ] ~ 2  _ _ r 2  =r~o=r~, 

10 ~ x 2 1  - -  ~ 3 2  - -  r 0 3  - F l O  - ~ 2 1  J ~ 3 2  - - , -03 

r i o  - r 2 1  - I~32 - t o 3  - - o .  1 = r 3 2 = r o 3 3 =  o _  o _  _ o _  
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Errors become important as one runs down the axes as reflected from 
tests involving the !ntegrability equations. Normally one lowers the grid to 
get better accuracy. In this case it does not work. The bigger grid gives 
greater accuracy as long as the grid is not too big to start. When one 
lowers the grid there are more points to calculate to get to the same 
position which brings in errors. In our previous work this effect did not 
dominate. In the case above it also appears that the structure of the 
solution is such that one is often adding big numbers to little ones, which is 
another source of errors. At any rate, the accuracy diminishes so quickly 
that we have no idea what the attributes of the solution are. It may be that 
something interesting is going o n - - b u t  we just cannot say. We have found 
other sets of data as well for which the computer fails us. 

3. T W O  DIMENSIONS;  IMBEDDING IN 
HIGHER-DIMENSIONAL THEORY; MAGNITUDE EFFECT 

Lower dimensions does not preclude greater structure far from the 
origin. This, we remember, was a drawback of the pulse solutions. This 
suggests that a study of lower dimensions may be useful. Lower dimen- 
sions are more easy to work with. We work here in two dimensions. 

The Rj~ t = 0  integrability equations collapse into four equations for 
eight unknowns. We then have the freedom of assigning four of the 
gammas arbitrarily and we use the integrability equations to solve for the 
other four. We have in this way obtained many solutions. Interestingly the 
pulse solution appears quite often. An example of data leading to a pulse 
solution is 

rl,=o, rl =o.1, r ,=o 

F l=o.1, F 2=o, r  =o.1 
(3.1) 

We take e~; to be 

e~ =0.88 e9 x= -0 .42  

e~=0.5 e~=0.9 
(3.2) 

The theory is then purely two dimensional. Another possibility is to 
take r~v to be as above but then take e~g to be the four dimensional ones 
used in Muraskin and Ring (1975a, page 515). Using (2.1) we then get a 
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theory involving 64 Fjk. We call this procedure "imbedding" of a two- 
dimensional F~v in a four-dimensional theory. 

We find that using a four-dimensional e"i does not alter the qualita- 
tive character of the pulse solution. 

Imbedding the F~v given above in a three-dimensional theory also 
gives the same type of behavior as in a pure two-dimensional theory (at 
least for the pulse solution). 

Getting a bit ahead of ourselves, the imbedding idea gives us a chance 
to take a three-dimensional F~v and extend the theory to four dimensions 
using a four-dimensional e~r Then the space coordinates would be treated 
differently from the time coordinates as far as F~7 is concerned. Thus the 
imbedding idea gives us a mathematical way to treat time different from 
space. 

Another nice feature of two-dimensional solutions is that we can 
change the magnitude of some of the gammas readily and still have a 
solution. Does the magnitude of some of the gammas affect the character 
of the solution? 

To some degree we know from four-dimensional work that the change 
of magnitude of some of the gammas does affect the character of solutions. 
Consider in four dimensions the following I '~ :  

rlo=r o=r o=r~ ' - 2 , - 1'01 - -  Fo2 = F03 - -  0 .1  

F13 = F21 = F312 = - 0.1 

rh=r 3=r i=0.i 

(3.3) 

r o, = = r o ,  = r 

No matter what choice of ~ we take, we get a solution to the integrability 
equations (1.2). As representative we study F~l as we have been doing thus 
far. For  q/ negative we get a pulse solution. We have chosen ~k to be 
- 0 . 0 1 , - 0 . 1 , -  1 . 0 , -  10 .0 , -  100.0. On the other hand when ~k is positive 
the solution approaches 0 in - x  but appears to grow indefinitely in + x 
with no turnabout points in between. When the magnitude of ~k is changed 
we appear to get nothing intermediate between the pulse solution and the 
solution in which I ~  gets bigger and bigger with no turnaround points. 

Let us go back to the two-dimensional case. We allow Fll to be a 
parameter, r l  r2 1-,2 ~12,J.21,~12 were assigned the same values throughout. We 
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obta ined  the following solutions of integrability: 

(a) (b) 

r l ,  = 1.0 Flu = 0.5 r l l =  1.0 r h =  0.5 

F I I =  5.0 r2~2-- - 2 3 7 . 5  i 7 1 , = - 5 . 0  1"12=-262.5  

F21 =0.016 r22-- 0.2 F21 = - 0 . 0 1 6  F22 = 0.2 

F 21 =0 .8  F2E = -- 14.0 F21 =0 .8  F22 = 16.0 

(c) (d) 

r'11 = 1.o r h = o . 5  I'll = 1.o r h =  0.5 

r E , =  - 0 . 7  r h =  - 6 . 6 5  FI,  = - 1.5 r ; 2 =  - 2 6 . 2 5  

r 2 1 = - . 1 1 4 2 8 5 7  r22=0.2  r 2 1 = - . 0 5 3 3 3 3 3  r22=0.2  

F2I =0 .8  r22 = 3.1 r21 =0.8  F22 = 5.5 

Mw'l~.kin 

(3.4) 

Changing F11 as above  did not  change the pulse character  of  the solution. 
The  magni tude  of F '  u at  the m a x i m u m  (min imum)  was changed.  The  
locat ion of the m a x i m u m  and  m i n i m u m  was not  very different.  

However ,  when  FI,  took on  the value of 0.7 we got 

F~I = 1.0 F~2 = 0.5 

I ' l l  = 0.7 F12 = - 3.15 

I "2, = 0.1142857 I'22 = 0.2 

r~l = o.8 r 2 , =  - 1.1 

(3 .5)  

Here  F~I approached  zero in the - x  but  took off in the + x direction. The  
si tuation is similar to (3.3). W h e n  we took Fll  =0.01 we got for  a solution I 

Fin = 1.424490 F~2= 0.5 

I ' l l=  0.01 F12 = - 0.533555 

F21 = - 0.749688 I'22 = 0.2 

F21 = 0.8 F22 = 1.316666 

(3.6) 

IThe integrability equation for F~I is a cubic. One of the solutions here has I'll ffi 1.0 but we 
listed above another solution (3.6). 
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Here I'll again appeared to grow without bound but in this case there was 
a turning point for F~r F~l approached 0 in the - x  direction. 

Thus we see that the change of magnitude of I'll appears to affect the 
character of solutions to some degree. Hard and fast conclusions cannot be 
reached since it is not clear whether we are dealing with unboundedness or 
large numbers. The magnitude effect in these instances did not lead to any 
greater number of wiggles (turnabout points). 

We see that the kinds of things we see along the axes in two 
dimensions also appear in four dimensions. On the other hand we have not 
obtained an oscillatory solution in two (or three) dimensions. Whether this 
is due to the difficulty of finding such a solution or not, we cannot say. 

4. T H R E E  DIMENSIONS 

The pulse solution appears in three dimensions as well. This occurs 
with or without imbedding (using a four-dimensional e'~i). An example of a 
three-dimensional pulse solution is 

rh- l = r~ 3 _ r  _ r _ 3 _ 3 _ - - ~ I 3 - - J 3 2 - - ' L 1 2  - -  3 2 - -  1 2 - - ] ' 3 1 - - ] " 3 3 - - 0 " 1  

(4.1) 
I ~ l  _ _ r l  _ _ ' I " 3  _ _ r 3  _ _ _ _ 0 . 1  

12 - -  J ' 2 2  - -  J - 2 2  - -  " t 3 2  

We have mapped this solution and found a planar maximum and mini- 
mum so typical of the pulse solutions. Another example of a pulse solution 
is 

rl fr ,- 3 3 _ _  - -  F 2 3  - r 3 2  - 1 ' i 2  = I ' 3 3  - 0 . 1  
(4.2) 

1-'~1 __Fll =F21----Y'2j. 22 ----73J'22 ----]~3"tl 1 = -0 .1  

We also found in three dimensions solutions that approach 0 in one 
axis direction but seem to grow without bounds in the opposite direction. 
We found some sets of data that have a few turnabout points and then 
seem to grow without bounds. In short the three-dimensional solutions 
were similar along the axes and in planar maps to the two- and four-di- 
mensional work. We have not as yet found an oscillatory solution in three 
dimensions. Symmetries like i _ i F~k--F~j were not a factor in whether pulse 
solutions appeared or not. 

5. A D D I T I O N A L  W O R K  WITH T H E  O S C I L L A T O R Y  
SOLUTION 

We imbedded the oscillatory solution in a five-dimensional theory 
using a five dimensional e~i . We still got oscillatory behavior with the 
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oscillations spaced at regular intervals along the axis. Thus the imbedding 
did not alter the characteristics of the solution. 

6. SUMMARY 

By now we have studied hundreds of solutions to the integrability 
equations. 

We have found similar type behavior in two, three, and four dimen- 
sions when we look at axes runs and some maps (except for the oscillatory 
solution, which we found only in four dimensions). This leaves open in our 
mind why four dimensions seems to be preferred in the actual world. The 
pulse type behavior was obtained quite readily. The pulse solution appears 
to satisfy the natural boundary conditions ]~jk-">0 at infinity as inferred 
from our computer work. Imbedding in a higher-dimensional theory did 
not alter the characteristics of the solution in the many cases we studied. 
Changing the magnitude of some of the components has some effect on 
the character of the solution but did not enable us to obtain significantly 
more wiggles. 

In four dimensions we found an oscillatory solution. Thus aesthetic 
field theory has solutions with greater structure than had been obtained 
previously. 

Is there an intermediary type solution between the bounded pulse 
solution and the solution in which the gammas appear unbounded after 
only a small number of turnabout points? The oscillatory solution may 
suggest that there is--but  we have not yet found it. 

We have found a solution for which the computer appears almost 
helpless. We have no idea as to the behavior of such a solution. 

We have thus far analyzed a great number of solutions of the 
integrability equation equations. The character of the solutions to the field 
equations depends on which solutions of the integrability equations we 
study. As the integrability equations are so complicated we do not have a 
complete understanding of the information buried in aesthetic field theory. 
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